Chapter 5

RESULTS OF HYDROLOGIC ANALYSES

SYSTEMWIDE EFFECTS

Large-scale effects of alterations were analyzed through the use of models. The Natural Systems Model (NSM), as described in **Appendix D**, was used to simulate predevelopment conditions in the watershed. Other basin-scale analyses, based on Hydrologic Systems Program Fortran (HSPF) modeling (see **Appendix C**), were used to estimate current (1995 Base Case) conditions.

The overall effects of structural changes in the watershed on flows to the St. Lucie Estuary is depicted in **Table 5-1.** This table shows the results of using the various models to determine present and historic flows from the various tributaries into the estuary. The present-day average flows (1965 to 1995) based on the 1995 Base Case and the estimated historical flows, based on NSM are depicted.

Table 5-1. Summary of Flows to the St Lucie Estuary for the 1965-1995 Period of Simulation and comparison of inflows from five tributaries plus direct inflow to estuary for NSM and 1995 Base Case, based on distributed flows for RMA* modeling.

Model Run	North Fork	C24	C23	C44	South Fork	Direct Inflow	TOTAL
Average Anı	nual Values (ac	-ft/yr)					
NSM	271,584	9,540	7,781	8,363	82,138	88,486	467,892
1995 Base	165,417	127,520	167,298	88,739	64,203	40,371	653,549
Average Anı	nual Values (cf	s)					
NSM	1,475	52	42	45	446	481	2,541
1995 Base	898	692	909	482	349	219	3,549
Average Anı	nual Values (in	ches per ye	ar)				•
NSM	6.60	0.23	0.19	0.20	2.00	2.15	11.37
1995 Base	4.02	3.10	4.07	2.16	1.56	0.98	15.89
Average Anı	nual Values (%	of NSM)					
1995 Base	61%	1337%	2150%	1061%	78%	46%	140%
Average Anı	nual Values (%	of total)					•
NSM	58%	2%	2%	2%	18%	19%	100%
1995 Base	25%	20%	26%	14%	10%	6%	100%

^{*}Research Management Associates, Inc. hydrodynamic model (USACE, 1996)

As indicated, flows to the remaining "natural" streams, the North Fork and South Fork Rivers, have declined from 272,000 to 165,000 acre-feet per year (39% reduction) and from 82,000 to 64,000 acre-feet per year (22% reduction), respectively and direct inflow has been reduced by about 46% from 88, 000 to 40,000 acre-feet per year. Discharges to the channelized tributaries C-44, C-23 and C-24 have increased by factors of 11, 22 and 13 respectively.

This increase in channelized flow from C-23, C-24 and C-44 canals has increased total discharges to the estuary by 40%. The apparent decreases in flows from the North Fork, South Fork and "direct inflow" are due primarily to channelization of streams and wetlands, filling of wetlands and overall decline the water table.

Further analysis of flow data (**Figure 5-1**) indicates that the increased flow, occurs primarily in the form of increased duration and frequency of high flow events (above 2000 cfs). In addition, flow has become more variable, as indicated by more flow events in the range from 500 to 1500 cfs.

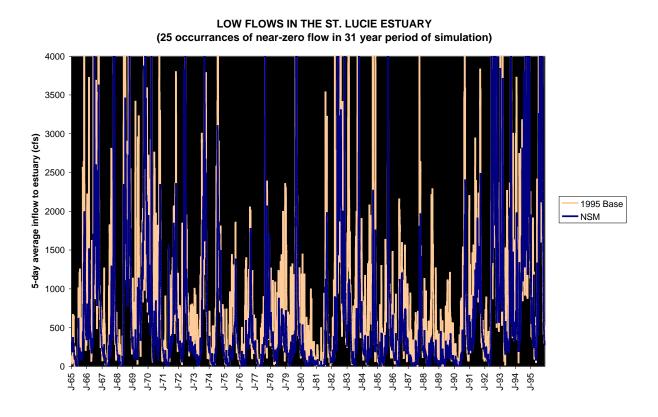


Figure 5-1. NSM and 95 Flows to the St. Lucie Estuary for the 31-year Period from 1965-1995

Another way to examine discharge is through the use of a frequency distribution curve as shown in **Figure 5-2.** When flows for the 1995 Base Case are compared with flows predicted by the NSM, it can be seen that the curve for the 1995 Base Case is shifted to the left.

The overall 40% increase in flows to the estuary (**Table 5-2**) is reflected at all rates of flow. For example for the NSM Base simulation, about 35% of flows to the Estuary were above 500 cfs, whereas for the 1995 Base Case, 55% of the flows were above 500 cfs.

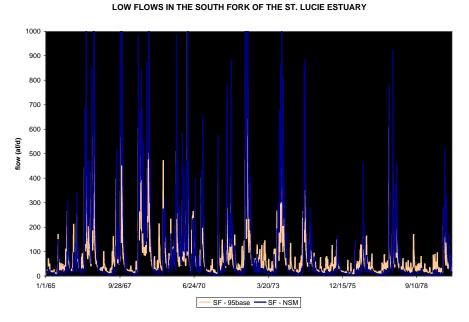
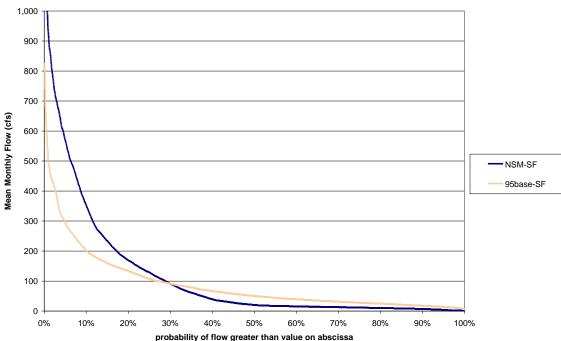


Figure 5-2. NSM and 95Base Flows to the South Fork River for the 31-year period from 1965-1995.

Table 5-2. Monthly Flows (avg daily cfs) to the SLE for NSM conditions (drier dry seasons shaded)

						Mo	nth					
Year	1	2	3	4	5	6	7	8	9	10	11	12
1965	260	247	133	58	2	215	168	128	168	791	1,504	469
1966	608	652	751	303	264	1,273	2,284	1,812	1,405	2,349	915	387
1967	202	165	103	<u>-1</u>	<u>-24</u>	130	202	638	527	2,797	832	287
1968	136	90	27	<u>-20</u>	131	1,469	2,444	1,337	1,293	2,857	1,297	394
1969	245	132	288	148	696	891	533	1,200	1,677	3,590	3,128	1,462
1970	1,175	833	1,695	939	207	458	444	229	243	1,641	1,054	302
1971	140	108	45	2	353	170	274	388	1,246	1,108	1,185	464
1972	239	249	141	181	1,243	2,712	971	423	288	242	259	180
1973	175	179	73	45	68	213	665	1,855	2,738	2,039	792	287
1974	220	89	60	20	54	250	1,401	1,943	1,276	878	316	206
1975	100	79	42	<u>-5</u>	155	105	187	330	598	842	350	180
1976	82	50	19	32	39	364	274	430	1,144	689	395	260
1977	219	96	26	<u>-22</u>	<u>-1</u>	84	164	321	1,626	814	595	1,010
1978	569	328	273	99	139	104	293	458	294	546	465	282
1979	578	203	86	34	178	193	226	288	3,234	2,405	587	347
1980	186	245	154	120	23	<u>-20</u>	37	49	164	86	51	46
1981	35	51	<u>0</u>	<u>-40</u>	<u>-3</u>	1	32	585	1,352	596	263	107
1982	79	118	264	492	1,179	3,001	2,388	2,549	1,319	1,041	2,085	657
1983	419	721	931	428	102	99	23	266	383	1,984	1,346	544
1984	428	189	230	141	108	137	157	216	763	774	618	531
1985	199	71	108	195	116	99	222	238	2,019	1,554	619	292
1986	373	136	164	87	32	458	568	690	515	318	596	255
1987	226	97	96	8	<u>-9</u>	<u>-1</u>	101	114	186	666	1,172	349
1988	208	226	144	27	54	98	223	238	207	83	133	61
1989	36	13	151	126	65	40	167	210	147	261	144	101
1990	54	61	34	<u>-14</u>	<u>-22</u>	40	120	374	647	1,903	802	252
1991	298	319	312	577	520	830	1,246	1,337	1,080	1,476	530	305
1992	202	180	112	91	14	745	1,857	3,679	2,897	1,969	1,956	925
1993	1,502	1,386	1,632	1,310	305	293	302	243	925	2,645	739	480
1994	425	1,064	715	454	494	1,136	1,872	2,609	3,500	2,555	3,699	3,116
1995	1,473	698	414	495	218	378	536	3,853	4,247	7,134	1,781	371
No. events< 0 cfs			1	6	5	2						


Effects on the South Fork River

Examination of the flow distribution for the South Fork (**Figure 5-3**) indicates a similar, but less dramatic trend. Overall flows to this river have decreased about 22% (**Table 5-2**). The simulated flow data indicate that more flow is occurring to the river during dry periods. Examination of the frequency distribution curve (**Figure 5-4**) indicates that the overall decline in flows to the South Fork of 22 % (**Table 5-2**) has occurred due primarily to a decrease in high flow events.

The two curves shown in **Figure 5-4** cross each other at about 100 cfs. This shows that the probability of mean monthly flow rates above 100 cfs has declined under the 1995 Base Case conditions whereas the probability of flows below 100 cfs has increased slightly.

Frequency Distribution for the entire St Lucie Estuary 4,000 3.500 3,000 2,500 Mean Monthly Flow (cfs) 2,000 NSM-NF 1,500 95base-NF 1,000 500 10% 20% 30% 50% 90% -500 probability of flow greater than value on ordinate

Figure 5-3. Frequency Distribution of Flows to the St. Lucie Estuary for NSM and 95 Base Case Model Simulations.

Frequency Distribution for Riverine Portion of South Fork

Figure F-4. Frequency Distribution of Flows to the South Fork for NSM and 95 Base Case Model

Simulations.

Effects on the North Fork

Figures 5-5 and **5-6** show the historic and current pattern of flows to the North Fork. As with the South Fork, the overall decline in flows of 39% has occurred due to a reduction in high flow events.

Peak discharges were of similar maximum rate. However, under NSM conditions, high discharge events typically persisted for longer periods of time. Total volume of discharge (as represented by the area under the curve) was greater for NSM conditions than for 1995 Base Case conditions. Periods of low freshwater release were of similar frequency and duration, but under the 1995 Base Case, there were more frequent pulses of freshwater release due to local rainfall events, resulting in greater variability of flow conditions, which could lead to more rapid changes in salinity in the estuary.

The two curves shown in **Figure 5-6** cross each other at about 100 cfs. This shows that the probability of mean monthly flow rates above 100 cfs has declined under the 1995 Base Case conditions whereas the probability of flows below 100 cfs has increased slightly.

0%

10%

20%

LOW FLOWS IN THE NORTH FORK OF THE ST. LUCIE ESTUARY

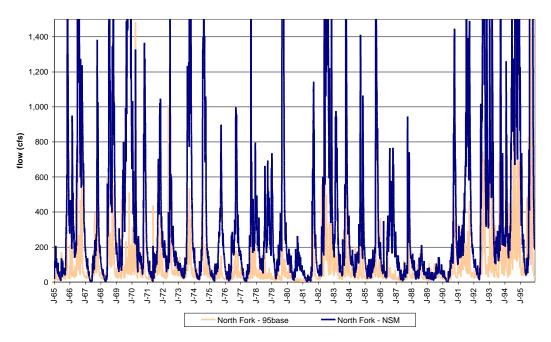


Figure 5-5. NSM and 1995 Base Case Flows to the North Fork

1,000 900 800 700 600 400 300 200 100

Frequency Distribution for Riverine Portion of North Fork

Figure 5-6. Frequency Distribution of Flows to the North Fork

50%

probability of flow greater than value on abscissa

60%

70%

90%

100%

40%

Effects on the Central Estuary

As indicated in **Table 5-1**, flows to the central estuary through the major canals have increased by a factor of ten or more. This area of the estuary has been highly impacted by shoreline development, dredging and filling, resulting in loss or degradation of most of the remaining plant and animal communities. Establishment of Minimum flow regimes is much less a concern than habitat restoration efforts and establishing maximum discharge criteria for these areas of the system. The limited shoreline and poor quality bottom sediments provide lower quality and less stable oligonaline habitat.

Analysis of Flows during Drought Conditions

Representative flow conditions that occur during a deficit rainfall period were selected using total flows to the estuary as predicted by the NSM simulation. The deficit flow period was defined as a three month period of unusually low flows. The thirty-one year period of record was examined and the period of below normal flows was selected from the final months of a dry (1-in-5 to 1-in-10 return period) dry season. **Figure 5-7** shows the selected dry period for both 1995 Base Case and predevelopment conditions.

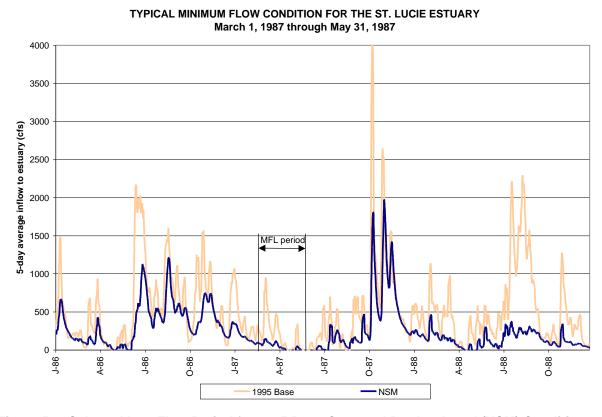


Figure 5-7. Selected Low Flow Period for 1995 Base Case and Predeveloped (NSM) Conditions

Note that base flows for both are similar during the selected period but 1995 Base Case conditions has a "flashier" response to rainfall events, as compared to NSM conditions. Flows in the range observed during the selected minimum flow period occur during most years.

Table 5-2 shows the total monthly flow entering the estuary for each month of the 31-year period of simulation. The five potential dry seasons (1973, 1976, 1977, 1987, and 1989) are shaded. The representative low flow period, as shown in the boxed cells in Table 4-3, extended from March 1 to May 31, 1987. During this period, average monthly flows declined from 96 cfs to - 9 cfs. This pattern of decline is typical for the dry season in this estuary. The magnitude of decline is representative of approximately a 1-in-10 drought condition.

Definitions of Harm and Significant Harm

Flows at or below zero (Bold underlined numbers in **Table 5-2**) occurred 14 times during the 31-year simulation period. Periods of low or even negative flow (negative flow occurs when the rate of evaporation from the estuary surface exceeds the rate of freshwater inflow from tributaries) may persist for 1 to 9 months. During such periods, it can be expected that the oligohaline habitat will no longer be present.

<u>Harm</u> is defined to occur to this estuary system when freshwater flows are less than the rate of evaporation for a period of two consecutive months during the dry season. Under these conditions, it is expected that most of the oligohaline zone will be lost or impacted. Such conditions occurred 5 times during the period of simulation, representing a return frequency of about 6 years under natural system conditions.

Five such two-month periods occurred during the NSM simulation for 1965 to 1995 rainfall conditions (**Table 5-2**). These events (indicated by light gray shading) occurred during April and May of 1967, 1977, 1981 and 1990 and during May and June of 1987. Because such low-flow and no-flow events occurred under natural conditions as well as under present conditions, the extent to which such occurrences constitute "significant harm" to the ecosystem is based on the definition that has been formally adopted by the SFWMD:

<u>Significant Harm</u> occurs when freshwater flows to the estuary are less than the rate of evaporation for a period of two consecutive months during the dry season for two or more years in succession.

Such an event did not occur during the 31-year period of simulation for the St. Lucie Estuary under Natural System Model conditions.

A similar analysis was conducted for 1995 Base Case conditions and the results are shown in **Table 5-3.** As with the NSM simulation,, the estuary experienced occasional periods of zero or negative flow. However, these periods of reduced flow occurred less often, were less severe (lower volume of deficit) and were of shorter duration than the periods of low flow that were simulated under natural systems conditions. In fact there were only two months (May 1965 and April 1981) during the 31 years of simulation when flows were zero or below. Since these two

DRAFT 5-8 05/21/01

events did not occur in consecutive months, the estuary (as a whole) did not incur harm, due to deficient freshwater flows, during this simulation.

Table 5-3. Monthly Flows (average daily cfs) to the SLE for 1995 Base Case conditions (drier dry seasons are shaded and total flow s to the estuary less than zero are indicated by bold underline text)

Year						Mo	nth					
i ear	1	2	3	4	5	6	7	8	9	10	11	12
1965	91	318	87	35	<u>-13</u>	403	704	395	784	1,923	1,471	356
1966	1,230	1,154	702	365	904	2,269	1,986	1,874	1,654	3,512	748	484
1967	313	505	243	15	8	549	966	1,373	765	2,525	493	310
1968	196	240	115	4	344	2,346	2,687	1,520	2,030	3,785	1,352	318
1969	534	362	1,352	274	2,109	893	542	1,369	2,023	3,797	2,497	1,463
1970	1,377	1,176	3,741	1,042	474	1,680	1,178	1,007	1,096	2,673	807	172
1971	209	346	124	37	306	444	651	866	1,032	1,303	1,550	561
1972	380	476	251	657	1,326	2,661	1,166	663	360	408	492	423
1973	515	559	230	186	243	844	1,746	1,504	2,485	2,355	597	241
1974	312	113	65	196	160	965	2,575	2,610	1,006	840	452	454
1975	131	202	109	20	457	415	1,069	859	1,094	671	224	125
1976	49	112	55	54	534	1,018	430	739	1,453	364	478	418
1977	294	180	79	12	104	237	372	478	1,841	829	763	939
1978	595	411	454	168	383	396	727	643	598	735	724	588
1979	1,480	337	197	129	733	535	713	678	4,721	1,897	633	548
1980	444	664	373	418	242	115	267	307	461	144	132	79
1981	46	138	3	<u>-24</u>	72	38	198	1,368	1,869	464	178	57
1982	114	312	1,069	1,674	1,360	2,456	2,284	2,760	1,264	1,284	2,128	640
1983	786	2,543	1,713	615	106	574	408	1,101	1,817	2,786	1,103	843
1984	699	340	697	302	321	661	1,296	863	2,196	909	1,325	645
1985	195	78	266	485	110	196	750	867	2,499	826	493	319
1986	569	188	389	101	138	1,336	811	947	689	708	741	418
1987	488	226	411	88	56	86	320	134	500	1,249	1,357	359
1988	443	542	483	75	308	320	948	1,557	550	171	566	208
1989	135	37	210	244	141	166	422	811	433	607	221	270
1990	206	171	70	26	89	259	429	851	1,604	1,862	485	122
1991	798	540	591	1,047	765	1,644	1,657	1,427	1,481	2,015	453	334
1992	155	411	224	215	28	1,708	1,692	4,158	3,038	1,762	1,554	699
1993	2,581	1,583	2,545	1,062	274	906	1,195	556	1,325	3,080	1,118	764
1994	1,115	2,029	770	921	896	2,000	1,697	2,055	3,981	2,280	3,884	3,753
1995	1,375	683	750	513	336	886	1,296	5,461	3,438	8,134	1,111	418
No. events £ 0 cfs				1	1							

ADDITIONAL EXAMINATION OF THE NORTH FORK AND SOUTH FORK RIVERS

Even though the estuary as a whole may not be impacted by lack of freshwater inflow, particular areas within this system may be experiencing stress or damage during dry periods. For this reason, the District developed a more detailed analysis for the North Fork and South Fork rivers. Both of these areas support fish, wildlife and plant communities that are dependent on an influx of freshwater and have substantial, persistent oligohaline zones. For this analysis, data developed for the Indian River Feasibility Study were heavily utilized. Prior District research efforts and development of the feasibility study options have focused primarily on analysis of the North Fork. Specific models have been developed to address hydrologic conditions in this river system. By contrast much less is known and much less effort has been spent so far to analyze

conditions in South Fork. Conclusions derived for the South Fork are based on results obtained from the large scale regional models and by extrapolation from the analysis of the North Fork. More detailed study of the South Fork River and watershed is warranted before specific criteria are recommended for this system.

North Fork St. Lucie River

As shown in **Table 5-1**, overall discharges to the North Fork have decreased by about 40%. This reduction in overall flow has occurred primarily due to a reduced frequency of high flow events, as flood waters have been diverted into C-24 canal. Results of the analyses of salinity conditions and flow in the North Fork River, indicate that there is a direct linkage between hydrologic conditions within the system and resulting salinity conditions in the estuary. By restoring historic hydrologic flow patterns to the River, the District should be able to restore some semblance of historic salinity regimes in the Estuary (Estevez 2000). Salinity conditions, in conjunction with suitable substrate and overall water quality, in turn will determine the ecosystems that can be expected to occur.

Restoration of proper salinity conditions may therefore contribute to overall restoration of plant and animal communities. In order to document or monitor such beneficial changes in the St. Lucie Estuary, it may be necessary to artificially establish submerged aquatic vegetation or oysters to overcome historic recruitment bottlenecks, and then study their responses to managed flows and salinities. Flows could be varied experimentally, or managed flow regimes could be monitored through time so as to allow periodic assessments of progress and adjustments to flow (Estevez 2000). Analysis of predicted historic hydrologic conditions and careful documentation of the effects of future modified hydrologic conditions can thus provide a means to achieve ecosystem restoration.

Extent of Oligonaline Habitat

A GIS analysis was conducted to analyze the features of the North Fork and identify reaches of the river that would be most likely to benefit from maintenance of oligohaline conditions. The river was accurately mapped to include both shorelines (**Figure 5-8**) and the data were analyzed to estimate the surface area (in acres) of available substrate for colonization by benthic communities. Representative data from this analysis, at approximately one-mile intervals, are shown in **Table 5-4**.

Figure 5-8 indicates that a significant change in the nature of the river channel occurs at a distance of approximately eight miles. This corresponds to a widening and dividing of the main channel and the adjacent floodplain. As shown in **Table 5-4**, during the first 7.9 miles, habitat increases gradually to cover 112 acres -- an average rate of about 14 acres per mile. From 8 to 10 miles, this rate increases approximately 3-fold. Total area approximately doubles over this two-mile interval from 112 acres at 7.9 miles to 213 acres at 10.2 miles. This corresponds to a rate of increase of benthic habitat of about 44 acres per mile.

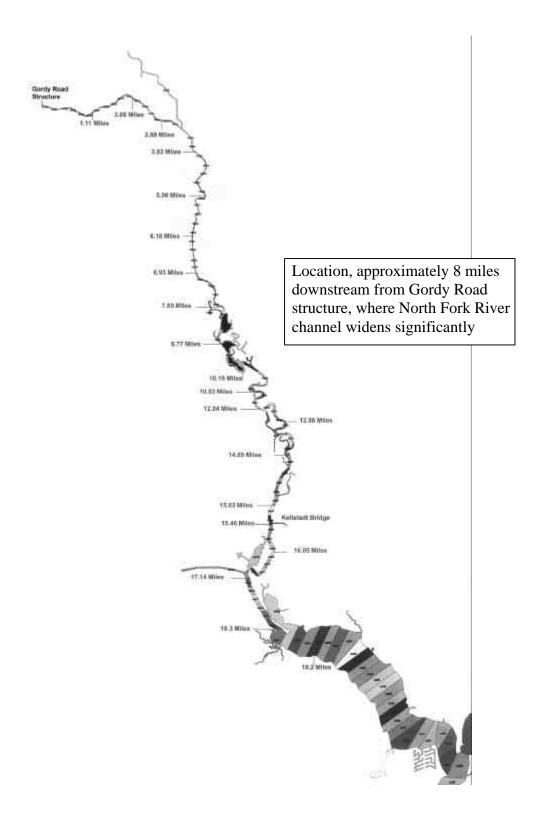
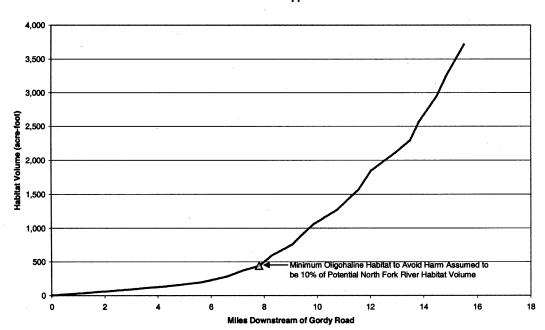



Figure 5-8. Results of the GIS Analysis of the North Fork St. Lucie River, Showing Major Features of the River and Mileage Downstream from the Gordy Road Structure.

Table 5- 4. Representative Data from the GIS Analysis of the North Fork

Segment	Segment Length	Segment Acres	Total Length	Total Acres	Miles
N006	915.313	1.79	5865.457	11.64	1.110882
N011	1036.568	2.01	11002.058	21.62	2.083723
N015	1042.915	2.02	15206.850	29.81	2.880085
N021	1161.402	2.25	21963.793	67.52	4.159809
N025	1215.656	2.37	26753.059	76.85	5.066867
N030	1024.613	2.00	32506.883	88.05	6.156607
N034	1060.989	2.07	36595.656	96.02	6.930995
N038	1477.508	5.10	41986.527	112.33	7.951994
N045	788.386	10.79	49751.190	184.71	9.422574
N046	4063.274	28.31	53814.464	213.02	10.19213
N048	2072.925	9.62	57717.599	237.90	10.93136
N051	1414.794	8.09	63558.373	269.93	12.03757
N055	1941.493	20.45	69835.790	311.69	13.22648
N058	1825.690	17.79	74446.975	348.63	14.09981
N062	1087.820	14.64	79382.860	392.44	15.03463
N067	1040.239	7.22	84760.102	432.70	16.05305
N073	462.663	62.31	90528.403	529.12	17.14553
N080	1401.406	16.19	98010.605	635.40	18.29720
N083	1075.879	69.37	101316.637	941.67	19.18876
N087	1061.443	97.55	105649.157	1295.89	20.00931
N092	1019.125	90.88	110603.605	1743.00	20.94765
N099	1070.941	87.76	117784.337	2357.89	22.30764
N105	930.414	62.67	124908.254	2881.84	23.65687

The depth data were then incorporated to calculate the volume of oligohaline habitat that could be utilized by pelagic and planktonic species. Results of this analysis are shown in **Figure 5-9**, which shows how the total volume of oligohaline habitat increases as a function of distance downstream. Total habitat volume in the North Fork River increases at an average rate of about 50 acre-ft per mile for the first eight miles. Habitat volume more than doubles from approximately 400 acre-feet at eight miles to more than 1000 acre-ft at 10 miles -- a rate of about 300 acre-ft per mile. This transition point where potential oligohaline habitat begins to increase rapidly as a function of distance, is considered to be a critical feature of the North Fork River system that provides a basis for assessing potential impacts of freshwater deliveries.

Cumulative Oligonaline Habitat Volume in North Fork of the St Lucie Estuary as a function of the 5 ppt Isohaline

Figure 5-9. Total Volume of Oligohaline Zone Habitat in the North Fork River as a Function of Distance Downstream from Gordy Road.

Flows Needed to Maintain Oligohaline Habitat in the North Fork River.

A hydrodynamic model was developed for the St. Lucie Estuary to predict salinity conditions based on tidal exchange, river flow, and basin configuration (Hu, 2000). This model was modified and extended to include the North Fork River, from Kellstadt bridge to the Gordy Road structure, a distance of about 15 miles (Qiu, 2001--Appendix F).. The model was used to develop a relationship between freshwater inflow (from Tenmile Creek, Fivemile Creek, rainfall and groundwater seepage) and salinity at various distances along the river (Figure 5-10).

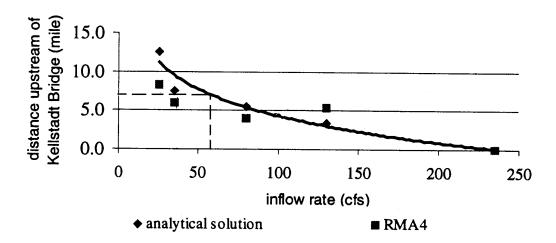


Figure 5-10. Location of the 5 ppt Isohaline Zone as a Function of Discharge from the Gordy Road Structure Based on the 1995 Base Case.

Results of this analysis indicate how much flow is needed in order to maintain a 5 ppt oligohaline zone at different locations within the river. For example, to maintain the oligohaline zone at a point seven miles above the Kellstadt Bridge (which corresponds to eight miles downstream from the Gordy Road structure), a flow of about 70 cfs is required (Figure 5-10). Likewise to maintain the 5 ppt isohaline zone at or below the Kellstadt Bridge, would require an estimated flow of 240 cfs or more. These flows were developed from mathematical models of the estuary, which in turn, were based on limited sets of measured flow and salinity data, and do not represent actual measured values. Due to limitations of the models, very low flows (less than 25 cfs) are not estimated accurately and need to be interpreted with caution.

Output from the NSM for the North Fork was further analyzed to determine the frequency and duration of events when flows declined below 70 cfs (resulting in loss of the more extensive areas of potential oligohaline habitat). Results of this analysis are shown in **Table 5-5**. Simulated flows ranged from a minimum of 3 cfs to a maximum of 3879 cfs. Flows were at or below 70 cfs during 93 of the 372 months of the simulation, or about 25% of the time under NSM conditions.

Table 5-5. Discharges (cfs) to North Fork as Predicted by the Natural Systems Model

WOOM .						moi	nth					
year	1	2	3	4	5	6	7	8	9	10	11	12
1965	98	112	69	51	23	62	70	54	72	414	1,270	403
1966	407	422	508	211	183	569	1,408	1,331	828	993	634	277
1967	147	98	63	21	3	47	93	168	236	926	350	169
1968	91	54	31	8	30	367	1,416	831	651	1,407	791	272
1969	168	90	185	119	208	631	436	989	1,440	###	2,453	1,212
1970	751	438	446	414	134	181	140	101	90	894	880	260
1971	120	70	42	25	51	69	107	158	501	703	634	273
1972	169	193	103	103	167	717	480	236	175	126	132	91
1973	82	92	52	41	42	98	345	1,088	1,426	1,325	559	195
1974	134	69	34	26	40	82	472	1,412	1,079	586	175	121
1975	69	45	34	17	59	67	96	254	449	587	253	146
1976	68	32	25	33	51	229	189	264	719	538	264	168
1977	136	71	40	13	19	49	67	235	946	329	242	459
1978	388	247	224	92	102	95	258	391	241	454	356	234
1979	564	211	94	36	94	138	210	267	###	1,969	391	241
1980	128	130	97	107	36	26	81	93	203	122	98	73
1981	48	45	22	4	17	18	25	217	847	416	177	80
1982	50	60	82	298	530	1,291	1,347	1,789	969	665	784	299
1983	207	558	774	323	103	100	49	126		1,248	847	327
1984	237	123	127	81	62	83	144	167	539	569	385	373
1985	141	62	47	61	49	58	95	119	1,260	1,238	534	188
1986	156	77	95	75	39	156	259	474	445	293	568	204
1987	191	96	106	51	29	18	34	50		325	536	213
1988	128	106	82	35	36	39	72	118	159	72	60	40
1989	35	24	39	31	28	21	33	60	56	90	67	60
1990	43	38	25	9	6	36	79	170	226	1,089	600	191
1991	145	195	210	263	247	432	908	1,038	870	1,020	405	203
1992	135	102	74	58	26	135	724	1,719	1,585	1,032	737	514
1993	800	816	855	793	185	148	219	169	226	1,144	393	300
1994	239	602	445	201	240	698	1,183	1,005	1,567	1,542	1,590	1,798
1995	965	487	250	160	73	69	96	1,126	2,756	3,879	1,344	268
No. events £ 70 cfs (Total=93)	6	10	13	17	19	13	6	3	2	0	2	2
No. events £ 21 cfs (Total=13)				6	4	3						

During those periods when the Natural Systems Model predicted that total flows to the estuary were zero or less (see **Table 5-2**), flows from the North Fork were generally at or below 21 cfs. For example, during April and May of 1967, 1977, 1981 and 1990, the NSM predicted flows in the North Fork that ranged from 3 cfs (June 1965) to 21 cfs. An exception occurred during May 1987 when total flows to the estuary were -9 cfs while flows from the North Fork were 29 cfs. Of the total number of 13 months when average flows were below 21 cfs, 10 of these were associated with periods when total flows to the estuary were less than zero.

A similar analysis was conducted using the 1995 Base Case conditions. Results of this analysis are shown in **Table 5-6**. Flows to the North Fork river ranged from 20 cfs to 1381 cfs, representing both an increase in amount of base flow and a dramatic decrease in maximum flows. The number of months when flows were below 70 cfs declined to 79, which represents about 21% of the period of simulation. Flows of 21 cfs or below only occurred twice, during April 1968 and 1981. April 1981 was also a month when total flows to the estuary, under 95 Base Case conditions (**Table 5-3**) were less than zero. During May, 1965, total flows to the estuary under 95 Base Case conditions were -13 cfs (**Table 5-3**), while flows from the North Fork were 22 cfs (**Table 5-6**).

Table 5-6. Discharges (cfs) to North Fork as Predicted for 1995 Base Case Conditions

***						Mo	nth					
Year	1	2	3	4	5	6	7	8	9	10	11	12
1965	28	149	44	35	22	104	230	108	252	668	627	125
1966	393	365	202	122	293	619	596	409	239	575	160	109
1967	81	122	62	32	24	181	224	262	161	276	65	76
1968	73	58	35	20	57	409	405	185	285	517	185	64
1969	93	58	269	52	434	198	140	407	698	1,058	628	378
1970	205	189	393	129	119	116	134	115	205	659	255	59
1971	44	87	35	39	56	194	144	320	171	348	238	155
1972	103	218	100	205	188	571	223	162	62	110	97	73
1973	104	84	62	57	114	204	607	511	616	484	109	68
1974	64	31	26	88	52	230	704	687	191	108	52	80
1975	36	104	49	32	153	75	276	327	460	210	105	60
1976	33	51	36	35	276	322	132	304	576	107	133	120
1977	92	56	36	35	79	109	178	247	686	281	267	300
1978	237	137	172	75	233	184	355	294	329	342	270	247
1979	377	73	61	73	342	187	395	318	1,863	592	127	146
1980	120	177	149	202	90	83	145	152	272	89	90	59
1981	32	85	25	21	72	37	159	502	739	176	60	29
1982	59	115	346	782	519	796	851	1,000	357	269	195	93
1983	190	571	343	106	72	101	125	198	349	411	153	141
1984	79	115	135	62	130	208	375	181	766	269	366	139
1985	68	33	110	168	62	80	200	281	805	251	167	86
1986	105	40	114	30	65	426	181	118	143	268	298	131
1987	116	68	178	40	64	36	105	65	206	362	393	89
1988	108	98	134	55	100	80	244	282	135	54	93	67
1989	62	29	60	70	75	76	103	240	121	163	106	146
1990	67	70	34	43	92	140	206	274	462	618	183	62
1991	161	117	176	242	246	675	581	495	461	439	92	93
1992	69	143	58	81	26	335	341	1,041	429	243	376	140
1993	378	205	489	151	48	221	429	148	187	752	189	134
1994	176	614	182	132	136	433	456	401	767	341	389	782
1995	218	139	116	64	38	103	113	879	471	1,381	164	56
No. events < 70 cfs (Total = 79)	11	10	14	16	11	2	0	1	1	1	3	9
No. events £ 21 cfs (Total=2)				2								

Summary

Results of these analyses indicate that for the 1995 Base Case, overall flows to the North Fork have declined compared to NSM conditions, and discharges during dry periods have increased. Results of the GIS analysis indicate that available habitat increases slowly with distance down the river and then begins to increase rapidly when the river channel widens at a point about eight miles downstream from the Gordy Road structure. Analysis of flow-salinity relationships indicates that a flow of about 70 cfs (about 4,000 acre-ft per month) is needed to maintain the oligohaline zone more than eight miles downstream. Flows below this rate will result in loss of the most extensive areas of potential oligohaline habitat.

Analyses of flow data for NSM and 1995 Base Case conditions, indicate that flow rates in the North Fork River fall below 70 cfs on a recurring basis. Under NSM conditions, flows of more than 70 cfs (4000 acre-ft per month) can be expected to occur 75% of the time. Under 1995 Base Case conditions, this rate of flow or more can be expected to occur more often, approximately 80% of the time. Flow rates of 21 cfs or below in the North Fork generally occur during periods when the St. Lucie Estuary is experiencing zero or negative net inflow of fresh water. The incidence of very low flows (21 cfs or below) declines from 13 months under NSM conditions to two months under the 1995 Base Case conditions

Relationship to Significant Harm

Within the North Fork St. Lucie River, the conditions that cause significant harm to oligohaline habitat do not occur. Thus, even under the driest conditions when oligohaline habitat does not exist in the main part of the estuary, some oligohaline habitat is likely to persist in the upper reaches of the North Fork St. Lucie River. Based on model simulations, the extent of this persistent oligohaline habitat appears to be greater under present (1995 Base Case) discharge regimes than it was under NSM conditions. When monthly average discharges rates from the North Fork River, as predicted by the models, are 21 cfs or less, oligohaline habitat no longer exists in the estuary.

South Fork St. Lucie River

A similar analysis of present and NSM conditions was conducted for the South Fork River. However, less information was available for this system in terms of historical flow measurements and salinity and a GIS analysis of the River has not been undertaken. No model is currently available to predict salinity conditions in the South Fork as a function of flow. The analysis was based strictly on the application of large-scale regional and subregional models.

Discharge characteristics of the South Fork River were estimated by District staff based on consideration of the relative sizes of the watersheds, the average amount of runoff predicted by NSM, and the shapes of the discharge hydrographs. The North Fork River has a watershed of approximately 106,000 acres and average amount of runoff (predicted by NSM) of 1475 cfs. The South Fork River has a watershed of 49,000 acres, which is 46% of the size of the watershed of the North Fork. Runoff of as predicted by NSM is 446 cfs, or about 30% of the amount that flows into the North Fork River. No detailed hydrographic data are available for the South Fork.

District staff estimated that a flow of 27 cfs (38% of the North Fork target) may provide oligohaline conditions in the South Fork that would be comparable to the habitat provided by a flow of 70 cfs in the North Fork. This number is shown in the table as a suggested management target for the South Fork system.

NSM and 1995 Base Case Model Results

For NSM Conditions (**Table 5-7**), flows in the South Fork River ranged from a minimum value of 1 cfs to a maximum of 1220 cfs. Flows were below the 27 cfs management target during 203 of the total of 372 months of simulation, which represents about 55% of the total simulation period. During periods when total freshwater flow to the estuary (**Table 5-2**) was zero or less -- April and May of 1967, 1977, 1981 and 1990, and May and June of 1987 -- the NSM predicted flows in the South Fork that ranged from 1 cfs (April 1981 and June 1987) to 7 cfs (April 1967). Flows to South fork were 7 cfs or less during 45 months or 12% of the simulation period.

Table 5-7. Results of the NSM simulation of Flows to the South Fork River

						Mo	nth					
Year	1	2	3	4	5	6	7	8	9	10	11	12
1965	16	17	13	9	6	22	15	14	15	87	81	16
1966	53	84	94	29	17	240	460	231	268	676	141	32
1967	15	14	12	7	5	10	14	158	110	884	280	39
1968	14	12	9	5	15	421	515	254	308	704	285	47
1969	16	13	16	11	158	125	24	74	69	232	332	113
1970	191	191	504	330	17	110	142	40	31	356	90	14
1971	11	11	9	5	85	15	21	85	382	180	267	81
1972	18	15	12	13	443	931	272	87	33	32	33	18
1973	17	23	12	9	9	16	87	342	606	335	111	21
1974	16	12	10	7	7	17	381	279	84	151	49	23
1975	14	12	9	6	13	9	14	13	18	80	32	14
1976	10	9	7	7	4	19	14	22	152	67	33	17
1977	16	12	8	5	4	8	13	13	213	198	148	236
1978	78	17	15	10	10	7	9	11	11	13	24	12
1979	9	6	5	5	12	11	9	8	247	212	81	30
1980	15	22	15	11	6	3	2	1	1	1	1	1
1981	2	3	2	1	2	2	5	91	166	62	20	13
1982	11	11	26	62	275	761	487	328	168	198	588	166
1983	71	36	39	44	10	8	5	23	25	200	259	76
1984	96	16	24	15	12	12	9	11	30	41	81	65
1985	15	11	14	22	22	11	16	17	217	129	17	19
1986	71	16	14	10	7	72	99	33	16	11	10	10
1987	9	7	4	2	1	2	13	12	22	88	249	46
1988	16	21	15	9	8	13	17	15	13	9	14	8
1989	6	5	18	14	11	8	18	19	17	51	24	13
1990	9	9	7	4	3	5	8	23	127	394	88	15
1991	26	30	23	133	123	164	154	133	85	203	43	28
1992	18	18	14	12	8	207	584	1,018	809	576	718	230
1993	313	313	367	278	24	35	22	15	311	658	130	48
1994	53	202	121	95	91	167	317	797	870	525	870	686
1995	264	91	62	154	60	130	216	1,089	724	1,220	242	27
No. events < 27 cfs (Total=203)	22	24	25	23	24	19	19	15	9	4	5	14
No. events £ 7 cfs (Total =45)	2	4	5	11	10	5	3	1	1	1	1	1

For the 1995 Base Case (**Table 5-8**), flows ranged from a minimum of 6 cfs to a maximum flow of 795 cfs. Flows less than 27 cfs occurred during 91 months, which represents 24% of the simulation period. Flows of 7 cfs or less occurred twice under the 1995 Base Case simulation. The South Fork River thus currently receives more water during dry periods and less water during high discharge events than occurred under NSM conditions.

Table 5-8. Results of the 1995 Base Case simulation of flows to the South Fork River

						Mo	nth					
year	1	2	3	4	5	6	7	8	9	10	11	12
1965	15	34	19	16	11	62	34	34	40	131	51	24
1966	103	88	64	45	49	209	172	132	177	306	55	33
1967	27	43	35	17	17	52	75	175	88	357	83	37
1968	24	27	19	15	52	304	254	147	192	324	111	34
1969	38	33	94	29	214	59	43	96	81	179	123	81
1970	128	104	373	146	65	160	71	43	82	206	45	23
1971	20	31	20	14	122	42	83	68	153	89	154	66
1972	40	33	34	69	318	441	163	60	52	65	70	57
1973	64	70	32	25	31	63	134	155	294	184	61	34
1974	55	26	34	19	25	97	254	124	58	97	47	39
1975	23	30	22	16	52	26	49	40	63	72	27	19
1976	16	22	13	19	17	53	34	79	108	40	66	39
1977	40	22	17	15	17	31	40	34	171	117	87	121
1978	48	34	39	26	33	26	40	56	30	37	40	26
1979	22	15	17	25	43	35	20	19	155	70	58	41
1980	29	64	38	20	17	15	14	11	11	10	9	7
1981	9	11	8	6	15	10	18	167	165	56	31	20
1982	19	30	139	117	214	409	263	172	125	129	453	100
1983	83	103	91	55	25	29	19	76	92	230	103	86
1984	80	37	76	42	45	71	26	35	93	53	128	58
1985	24	17	40	52	26	31	80	66	230	83	35	55
1986	124	35	48	44	25	153	88	53	37	25	23	29
1987	23	14	17	11	11	17	35	31	38	141	142	33
1988	30	51	34	21	31	32	78	67	32	20	41	16
1989	14	12	34	39	22	21	60	77	50	88	34	23
1990	19	25	20	14	13	22	26	117	183	177	45	26
1991	106	99	64	194	130	176	123	129	97	170	41	42
1992	26	45	39	34	19	169	117	377	384	223	72	41
1993	221	146	241	145	70	122	66	43	283	479	141	80
1994	108	193	93	125	98	190	224	483	547	274	541	381
1995	128	54	66	106	64	132	134	657	345	795	136	33
No. events £ 27 cfs (Total = 91)	14	10	10	16	15	6	3	2	1	3	3	8
No. events £ 7 cfs (Total =2)				1								1

Relationship of NSM and 1995 Base Case Flows to Significant Harm Criteria

There is no evidence that the South Fork River system ever experienced significant harm due to a complete loss of oligohaline habitat (zero flow) under historic conditions. The South Fork River is also much less likely to experience such an impact under current conditions. During periods when zero net flow of freshwater was occurring to the St. Lucie Estuary, the South Fork River had a flow rate of 7 cfs or less. Such flows occurred about 12% of the simulation period under NSM conditions but less than 1% of the time (during 2 of 372 months) under current (1995 Base Case) conditions.

CONCLUSIONS AND RECOMMENDATIONS

St. Lucie Estuary

Net freshwater flows (sum of surface and groundwater inflows minus evaporation) to the estuary were at or below zero during 14 months of the 31-year Natural Systems Model simulation period. During such events, which may persist for 1 to 9 months, During such periods, it can be expected that the oligohaline habitat will no longer be present.

<u>Harm</u> is defined to occur to the estuary system when freshwater flows are less than the rate of evaporation for a period of two consecutive months during the dry season.

Such conditions occurred 5 times during the period of simulation, representing a return frequency of about 6 years under natural system conditions. Because such low-flow and no-flow events occurred under natural conditions as well as under present conditions, the extent to which such occurrences constitute "significant harm" to the ecosystem is based on the definition that has been formally adopted by the SFWMD:

<u>Significant Harm</u> occurs when freshwater flows to the estuary are less than the rate of evaporation for a period of two consecutive months during the dry season for two or more years in succession.

Such an event did not occur during the 31-year period of simulation for the St. Lucie Estuary under Natural System Model conditions.

North Fork

Results of initial GIS analyses and modeling studies indicate that a flow of at least 70 cfs may be appropriate as a management target for this river. Flows at or below 21 cfs occur during periods when significant harm is occurring in the St. Lucie Estuary. There is no evidence of oligohaline habitat loss beyond the extent of this zone that occurred historically. Such a reduction in habitat would occur if the freshwater flow regime were altered to result in loss of the oligohaline zone at a point eight miles downstream from the Gordy Road structure more often than occurred under NSM conditions, i.e. with a probability of more than 20%.

District staff recognize that these definitions are not exact. The concept is based on the presumption that any loss of oligohaline zone habitat beyond what occurred under natural conditions (as simulated by the NSM) represents some degree of *harm* to the system. The exact point at which this loss becomes *significant harm* cannot be determined without additional study of the hydrology of the system and the resources at risk.

Lacking this precise knowledge, the selected approach represents a conservative standard. The particular location and flow conditions were chosen to represent a significant "breakpoint" in the amount of oligohaline habitat available. Loss of areas downstream from this point means that most of the oligohaline habitat in this system has been compromised. Such incursions may occur fairly often under natural conditions, and it is likely that recovery from such events is rapid and complete within a few months after low salinity conditions have been restored. Nevertheless, the

DRAFT 5-19 05/21/01

District recognizes a management goal for this system to provide a more stable base flow and oligohaline habitat as means to improve productivity of the estuary itself and adjacent coastal and offshore species that depend on availability of this habitat during part or much of their life cycles. Any MFL criteria that are developed must be consistent with that goal.

South Fork

Preliminary analyses of the limited amount of available information indicate that a flow of 27 cfs may be appropriate as a management target for this river. Flows at or below 7cfs occur during periods when significant harm is occurring in the St. Lucie Estuary. Although these preliminary results indicate that no impacts are likely to occur in the South Fork River as a result of current and proposed future management actions, further analysis of this system may be warranted to refine management targets for inclusion in future updates to the MFL criteria. These refinements should include more detailed analysis of basin topography and hydrography; improved modeling of flow from the watershed to the river; and development of a model or mathematical relationship to determine salinity conditions in the River as a function of flow.

ABILITY TO MEET THE PROPOSED CRITERIA

Data and modeling studies indicate that under current (1995 Base Case) conditions, more freshwater is being discharged into the North Fork River during dry periods than was discharged historically. This increased flow during low-flow periods has resulted in a decreased probability of flows reaching zero cfs or less throughout the estuary. There is no evidence that the proposed significant harm criteria will be exceeded in this system under present conditions.

Examination of the North Fork and South Fork Rivers indicates that both of these systems support viable oligohaline habitats. The exact extent and duration of the oligohaline zones in these systems is uncertain. An attempt to model the oligohaline zone in the North Fork River indicates that a flow of 70 cfs or more is desired in this system to provide a suitable area and volume of oligohaline habitat. Flows of less than 21 cfs from the North Fork occur during periods when net flow of freshwater to the estuary is zero or less. Flows from the North Fork should be maintained above this level during periods when other sources of freshwater input to the estuary are restricted.

A similar model of the relationship between flow and salinity has not been developed for the South Fork River, but empirical calculations indicate that a flow of 27 cfs may be appropriate to maintain a comparable amount of oligohaline habitat in this system. Flows of less than 7 cfs from the South Fork occur during periods when net flow of freshwater to the estuary is zero or less. Flows from the South Fork should be maintained above this level during periods when other sources of freshwater input to the estuary are restricted.

PREVENTION STRATEGY

Since the proposed significant harm criteria are not being exceeded, there is no need to develop a recovery strategy for this system. Furthermore, changes that are proposed for the watershed as part of the IRL feasibility study are designed to provide additional retention basins along the river, which will reduce the amount and frequency of high volume discharges and can potentially provide additional water for discharge to the river during dry periods. With these features in place, the probability of exceeding the proposed MFL criteria may be further reduced.

However, the ability to better manage water in the watershed may also make it possible to capture and retain water from the watershed for allocation to other (e.g. urban and agricultural water supply) purposes. Under such conditions, future flows to the estuaries could be reduced rather than increased. For this reason, the following management approach is proposed that is intended to ensure protection of the oligohaline zone in the North Fork and South Fork St. Lucie River and Estuary:

- The management objective for the North Fork River should be to provide a flow of <u>at least</u> 70 cfs to the river, during the driest months from March through June, needed to maintain oligohaline habitat in an area that extends from the Gordy Road structure to a point eight miles downstream. An average dry season flow of perhaps 200-300 cfs may be desirable as a *restoration goal*, to provide a more extensive oligohaline habitat that would generally extend from the Gordy Road structure 15 miles downstream to Kellstadt Bridge.
- During periods when insufficient water is available to meet these target flows, discharges from the North Fork River should be maintained above 21 cfs, to reduce the likelihood that significant harm may occur in the St. Lucie Estuary.
- Analyses should be undertaken by the SFWMD to develop similar criteria for the South Fork River. Current estimates indicate that at least 27 cfs flow should be provided to this system during the driest months to protect existing oligohaline habitat.
- During periods when insufficient water is available to meet these target flows, discharges from the South Fork River should be maintained above 7 cfs, to reduce the likelihood that significant harm may occur in the St. Lucie Estuary.
- Releases of water through C-23, C-24 and C-44 Canals should not be used as a means to
 increase the net flow of fresh water to the estuary and prevent harm or significant harm
 during dry periods. Water released from these sources is generally of poorer quality than
 water that flows from the rivers and enters the estuary at locations where it provides poor
 quality oligohaline habitat.
- Studies are underway to collect additional topographic and hydrologic data needed to improve the models that are used in the South Fork basin. The extent of oligohaline habitat and salinity conditions that are produced by various flow regimes need to be determined. Assessments are also needed to identify particular resources in this river that need to be protected.
- Additional research and monitoring are needed to refine existing data and models and improve the flow estimates for the North Fork River.